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Abstract. The neglect-of-binding aspect of the impulse approximation-the ‘impulse 
hypothesis’-is discussed by considering the scattering of a Gaussian wave packet by a 
particle bound to a fixed origin, when multiple scattering and shadow effects do not occur. 
It is shown that the impulse approximation for the transition amplitude is equivalent to the 
neglect of binding during the collision in this case. Conditions involving the collision time 
and binding potential are found for the neglect of binding during the collision to be valid, 
and are shown to closely resemble the corresponding classical conditions. The nature of 
collision time is discussed. The generalisation of the impulse approximation to a collision 
of a particle with a bound two-particle system is briefly indicated. Finally the suitability of 
the impulse approximation for atomic and molecular scattering problems is considered. 

1. Introduction 

The impulse approximation has been known for many years. In its present form it was 
introduced by Chew (1950), and subsequently found application to many scattering 
problems, both in nuclear and atomic physics. 

The impulse approximation consists of three assumptions. In the case of a single 
particle incident upon a complex target system consisting of two or more particles 
bound together they are: 

I. The range of interaction is small compared with the inter-particle distances, so 
that the incident particle interacts with only one particle of the target system during 
the collision. 

11. The target system can be regarded as transparent, so that the amplitude of the 
incident particle is not appreciably diminished in crossing the target system. This is to 
say that the near particles of the target system do not cast shadows on the far ones. 

111. The scattering occurs over such a short time that the effect of the binding 
forces during the collision may be neglected. 
We thus think of the scattering as taking place from only one particle of the target 
system. The only part played by the initial state of the target system is to give a 
momentum distribution to the particles of the target system. 

Assumption 111 is sometimes known as the ‘impulse hypothesis’ (Coleman, 1969), 
and we shall adopt this name here. In this paper we shall only be concerned with the 
impulse hypothesis. 

The impulse hypothesis was first discussed by means of an iteration procedure 
soon after the original paper of Chew (Chew and Wick 1952, Ashkin and Wick 1952, 
Chew and Goldberger 1952). Epstein (1960) considered the case when the pertur- 
bation of the system is time-dependent, and showed that this is exact i f  the pertur- 
bation is an impulse. Although he did not use a perturbation treatment he assumed a 
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potential which suddenly switches on at time t = 0 and suddenly switches off at time 
t = T. Myhrer (1975) discussed the validity of the impulse hypothesis in meson- 
nucleus scattering, again by examination of the first terms of a perturbation series. 
Coleman (1969) and Briggs (1977) also discussed the impulse hypothesis from a 
perturbation point of view. 

As pointed out above, in this paper we shall examine the impulse hypothesis. In 
order to simplify matters we shall consider the scattering of a particle 1 by a particle 2 
bound to a fixed origin 0, where 1 does not interact with 0. In this case assumptions I 
and I1 disappear, and the impulse approximation becomes identical with the impulse 
hypothesis. The use of perturbation theory or artificial switching on and off the 
potential will be avoided by consideration of the scattering of a Gaussian wave packet 
representing the initial motion of the incident particle. I t  then becomes possible to 
talk about the duration of the collision, and to give a clear meaning to such a phrase as 
‘during the collision’ which occurs in the impulse hypothesis. We shall derive the 
impulse approximation in the case of the scattering of an incident particle by a bound 
particle described above, when assumptions I and I1 do not apply. The generalisation 
of the results to the collision of a particle with a complex target containing two bound 
particles is then easily made. 

2. The impulse hypothesis 

We shall denote the position vector of the incident particle 1 relative to the origin by 
rl ,  and the position vector of the target particle 2 relative to 0 by r2. The interaction 
between 1 and 2 will be assumed to be described by a potential V = V ( r l ,  r2), and the 
binding of 2 to the origin will be assumed to be described by a binding potential 

The states of the system in the absence of the interaction V are described by ket 
w =  W(r2). 

vectors 

lk, n ) =  lk)ln) (2.1) 
where Ik) represents a 6-function normalised plane-wave state of 1 moving freely with 
momentum hk while In) represents a state of the particle 2 in the potential W. In 
order that the states lk, n )  form a complete set it may be necessary for some of the 
states In) to lie in the continuum. The wavefunction of the state (2.1) will be 

( r l ,  r2Ik, n )  = ( r l l k ~ r 2 I n )  = ( 2 ~ ) - ~ ’ ’  exp(ik. rl)(r21n), (2.2) 
(r21n) being the wavefunction of particle 2 in the state In).  

If K1 and K 2  are the kinetic energy operators associated with particles 1 and 2 
respectively, and ml and m2 are their masses, the energy of particle 1 in the absence of 
V is 

Ek = h2k2/2ml (2.3) 

Ki 1 k ) = Ek Ik )- 

and so Ik) satisfies the eigenvalue equation 

(2.4) 
Similarly if En is the energy associated with the state In) the latter satisfies the 
eigenvalue equation 

(K2 + w)In ) = En In ). (2.5) 
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It follows from ( 2 , 1 ) ,  (2 .4)  and ( 2 . 5 )  that the state Ik, n )  satisfies the eigenvalue 
equation 

Holk, n)=Eknlk, n )  (2 .6)  
where 

Ho = K 1 + K2 + W 

is the Hamiltonian of the unperturbed system while 

Ekn = Ek + E n  (2.8) 

is its total energy. 
We now suppose that the initial state of the system consists of the incident particle 

1 with momentum hk, while the bound particle 2 is in a state l i ) ,  so that the initial state 
of the system is represented by the ket lki, i ) .  Similarly we suppose the final state to be 
represented by the ket Ikf , f )  so that Ztkf is the momentum of the incident particle 1 
after the collision while the target particle 2 is left in a state If). 

The exact transition amplitude T(ki ,  i + kf, f )  is given by the standard expression 

T(ki, i -+ kf, f )  = (kp f l  Vlki, i ,  +) (2 .9)  

where Ik,, i ,  +) represents the scattering state obtained from lki, i) by the perturbation 
V which obeys outgoing wave boundary conditions. The state Iki, i ,  +) satisfies the 
well known Schwinger-Lippmann equation 

Iki, i, +)=  Ik,, i )+ (E-Ho+ie ) - 'V lk , ,  i ,  +) (2.10) 

where E is the energy of the system and E is a positive number. By energy conser- 
vation E is the energy of both the initial state Ik,, i) and of the final state l k f , f ) .  The 
positive number E is allowed to tend to zero at the end of any calculation. In 
particular, if H is the perturbed Hamiltonian 

H = H o + V  ( 2 . 1 1 )  

Hlk,, i ,  +) = Elki, i, +) 

the state Ik,, i ,  +) satisfies the eigenvalue equation 

( 2 . 1 2 )  

asE+O+.  

the system is now given by 
Let us consider the system in the absence of the binding W. The Hamiltonian h of 

h = K1+ K2 + V ( 2 . 1 3 )  

and the unperturbed Hamiltonian h, is given by 

h o = K i + K Z .  (2.14) 
The eigenstates of ho are represented by kets of the form 

Ik, K )  = l k ) lK )  ( 2 . 1 5 )  

which describe a state of motion in which both particles are free, particle 1 with 
momentum hk and particle 2 with momentum h ~ .  If Ek is defined by ( 2 . 3 )  while 

E,  = h 2 ~ ' / 2 m 2  (2.16) 
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is the energy of the freely moving particle 2, the energy of the state Ik, K )  is 

Ek, =El,  + E ,  (2.17) 

and, from (2.14) 

holk, ~ ) = E k , l k ,  K ) .  (2.18) 

Associated with the free state Ik, K )  there is a scattering state lk, K, +) which 

(2.19) 

As before the state Ik, K, +) obeys outgoing wave boundary conditions and, when 
E + 0 + , the eigenvalue equation 

satisfies the Schwinger-Lippmann equation 

lk, K ,  +) = Ik, K ) +  (Ekx - ho+iE)-' Vlk, K ,  +). 

hlk, K ,  f ) = E k r I k  K ,  +). (2.20) 

Thus Iki, i, +) represents scattering of particle 1 with unperturbed momentum hki by 
particle 2 when initially bound to the origin 0 in a state li), the scattering taking place 
through the interaction V between 1 and 2, while lk, K ,  +) represents the scattering of 
particle 1 with unperturbed momentum Ak by a free particle 2 with unperturbed 
momentum AK, the scattering again taking place through the interaction V. 

Chew (1950) introduced the hypothesis that assumption I11 is equivalent to 
replacing the exact state Iki, i ,  +) in (2.9) by means of the approximation 

lki, i, +) Ik,, K ,  + ) ( K ,  i) dK (2.21) J 
where ( K l i )  is the amplitude for particle 2 to have momentum AK when in the state (i). 
In other words, he assumed that the impulse hypothesis is equivalent to the assertion 
that the transition amplitude may be approximated by the expression 

(2.22) 

If we expand the final state If) of particle 2 in terms of a complete set of plane wave 
states I K ' )  we obtain 

T ( k ,  i + k,, f) J J ( f l ~ ' ) ( k f ,  K ' I  Vlki, K ,  + ) ( K l i )  dK dK'. (2.23) 

The transition amplitude is therefore expressed in terms of the amplitude 
(k,, K ' I  Vlki, K, +) for free particle scattering. Since the double integral in (2.23) goes 
over all values of K and K ' ,  'off-the-energy shell' matrix elements appear when the 
energies of the states Iki, K )  and lkf, K ' )  are unequal. 

3. Derivation of the impulse by hypothesis 

The states discussed in 3: 2 were all time-independent, but the impulse hypothesis as 
formulated in assumption I11 of B 1 clearly refers to a process which takes place in 
time. If we are to relate the approximation (2.22) to assumption I11 we must consider 
the time-dependent formulation of scattering theory. 

Initially particle 2 is in a bound state li, t )  = li) exp( - iEit/A). Particle 1 cannot 
have a precise momentum hki, and so its state must be described by a wave packet. In 
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order to minimise the spread in momentum and space we choose a Gaussian wave 
packet. It is natural to take for the Gaussian wave packet one whose centre moves in a 
straight line through the origin and coincides with the origin at time t = 0 when we 
assume the packet to be minimal. Its mean momentum will be taken to be hki, and we 
shall assume that the spread of momentum is sufficiently small so that the relevant 
transition amplitudes do not vary significantly for values of k for which the momen- 
tum distribution is not small. This can always be done by taking the spatial spread of 
the packet to be sufficiently large. 

If we put hki = mlu then U is the velocity of its centre. Assuming further the 
minimum half-width to be L, the Gaussian Ig( t ) )  for the initial motion of particle 1 will 
have a position probability distribution 

where 

2 2 h2t2 
L,  = L  +- 

m :L2’ 

The wave packet therefore spreads out at a rate h/mlL as we go into the past or 
future. The representative in momentum space of the Gaussian at t = 0 will be 

(3.3) - 3 / 4  3 / 2  ~ ( k ) = ( k j g ( o ) ) =  7~ L exp[-tL2(k-ki)*]. 

The initial unperturbed state of the system is now Ig(t))li, t ) ,  and we shall denote this 
simply by It). The energy of the time-independent unperturbed state Ik, i )  is E k i  (cf 
equation (2.6)), and so It) is given by 

It) = J G(k)lk,  i )  exp( - iEkit/h) dk. (3.4) 

In particular, at t = 0 

10) = J G(k)lk,  i )  dk. (3.5) 

When the interaction V is present (3.4) represents the state of the system only 
asymptotically as t + -a. At finite times Ik, i )  in (3.4) must be replaced by the 
Schwinger-Lippmann state lk, i, +). It follows that if It, +) is the perturbed state of 
the system at time t then at t = 0 It, +) is given by replacing Ik, i )  by Ik, i ,  +) in (3.5); 
that is, by 

We now note that (3.5) can be expressed in terms of the plane wave states I K )  of 
free motion of particle 2 according to 

(3.7) 

The state of unbound motion (that is, free motion of both particles) which coincides 
with this at time t = 0 is 
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(cf equation (2.18)). If such a state were perturbed only by the interaction V, it)u is its 
asymptotic form as t + -CO. At t = 0 such a perturbed state would be given by 

IO, +), = J /  G ( ~ ) ( K I ~ ) I ~ ,  K ,  +) dk d~ (3.9) 

where lk, K ,  +) is the Schwinger-Lippmann state described in § 2. 
The evolution operator in the interaction picture is 

U(t, ,  t 2 )  = exp(iHotl/h) exp[ - iH(tl - t ~ ) / h ]  exp( - iHot2/h). (3.10) 

On use of (2.11), (2.7) and (2.14) this may be written 

U ( t l ,  t 2 ) =  exp[i(ho+ W ) t l / h ]  exp[ -i(ho+ W +  V ) ( t ,  - t2 ) /h]  exp[ -i(ho+ W)t,/h].  

It is well known that 

(3.11) 

lo, +)  = U(0 ,  -” (3.12) 

if U(0, - C O )  is the strong limit as t + -CO of U(0,  t ) ,  provided V and W are not too 
singular when rl = r2 or r2 = 0, and fall off sufficiently fast as Irl - r21 or r2 + +a, 
respectively. There is therefore a time T > 0 such that, effectively, 

10, +)=  U(0,  -7)Io). (3.13) 

We now insert (3.13) into (3.6), premultiply by V and take the inner product with the 
final state Ikf, f) to obtain 

(kf, f l  V U @ ,  - ~)10) = [ G(k) (k f ,  f l  Vlk, i, +) dk. (3.14) 

The quantity (kf, f l  V ( k ,  i ,  +) is the exact transition amplitude T(k ,  i + kf, f )  for the 
process Ik, i ) +  Ikf , f )  and so (3.14) can be written 

(kf, f l  VU(0,  - 7110) = [ G ( k ) T ( k ,  i + k,, f) dk. (3.15) 

We can now specify more precisely the half-width of the wave packet. We note 
that the main contribution of G ( k )  to the integral on the right-hand side of (3.15) 
comes from the sphere Ik-kiISL-’  in momentum space (cf (3.3)). The half-width 
will therefore be taken sufficiently large for the variation of the transition amplitude 
T(k, i + kf, f )  over the sphere Ik - kil S L-’ to be small; this quantity may therefore be 
replaced by its value at k = ki and taken outside the integral over k. We thus obtain 
from (3.15) 

(kf, f l  VU(0, - T ) / O )  = T(k, ,  i + kf, f)/ G ( k )  dk = 23/2.rr3’4L-3/2T(ki, i + kf, f )  (3.16) 

(3.17) 

(3.18) 
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is, by (2.22), the approximate transition amplitude according to the impulse hypo- 
thesis. If we take L sufficiently large so that t (k ,  i + k f , f )  varies little over the sphere 
lk -ki/ S L-’ we obtain from (3.17) and (3.18) the result 

(kf ,  f l  V I O ,  + ),, = 23’2~3/4L-3/2t(ki, i --* kf, f). (3.19) 

The evolution operator U,(tl, t 2 )  for scattering by V in the absence of the binding 
W is obtained from (3.11) by putting W equal to zero, so that 

U,(tl, t z )  = exp(ihorl/h) exp[ - i(ho+ V ) ( t ,  - f 2 ) / h ]  exp( - ihotz/h). (3.20) 

Now 10, +), is the perturbed state produced at time t = 0 by V from the state which, if 
allowed to evolve under the free particles Hamiltonian ho, would become the state IO). 
It is therefore given by 

10, +),= -7)jO). (3.21) 

(This assumes that the collision of the freely moving particles begins at the same time 
-7, a point which will be discussed later). Substitution of (3.21) into (3.19) yields 

(kf, f l  VUu(O, - T ) / O )  = 23’2~3’4L-3’2t(ki, i + kf, f). (3.22) 

If we compare (3.16) with (3.22) we see that the assumption 

T(ki ,  i + kf, f) = t(ki ,  i + kf,  f) (3.23) 

is logically equivalent to the assumption 

(kf ,  f l  VV(0, - 710) -- (kf, f l  VUdO, - 7)IO). (3.24) 

From (3.1 1) and (3.20) we see that the two sides of (3.24) differ only in the neglect of 
W in the evolution operator U, on the right-hand side of (3.24), establishing the 
equivalence of assumption I11 and (2.22). 

4. Relation to the Born approximation 

If we premultiply (3.5) by V and then take the inner product with Ikr, f )  we obtain 

(kf, f l  VlO) = J G(k)(kf,  f l  Vlk, i) dk. 

As before, for sufficiently large L equation (4.1) becomes 

(4.1) 

( k f , f / ~ I o ) - ( k f , f ~ V t k i ,  I )  J G ( k )  dk = 23’2~3’4L-3’2(kf, f l  Vlki, i). (4.2) 

Now if we assume that U(0, - 7 )  may be replaced by the identity operator in the 
matrix element on the left-hand side of (3.16) we have 

(kf ,  f l  VU((), - 7)Io) = (kf ,  f l  

T(kii + kf, f) I: (k,, f l  Vlki, i) 

(4.3) 

(3.16) and (4.2) show that the approximation (4.3) is equivalent to the approximation 

(4.4) 
which is the Born approximation. 
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5. Sufficient conditions for the neglect of binding 

As we saw in the last section the approximation (4.3) is logically equivalent to the 
Born approximation (4.4). As can be seen from (3.11), approximation (4.3) is 
equivalent to the assumption that the interaction V is weak and so can be neglected in 
the evolution operator on the left-hand side of (4.3). We shall now investigate the 
conditions under which W may be neglected in the evolution operator; that is, 
conditions under which the approximation (3.24) holds. 

Equation (3.24) is certainly satisfied if V can be treated as a small perturbation, for 
then (3.11) and (3.20) show that both U(0, - 7 )  and UJO, - 7 )  may be replaced by 
the identity operator. However, it may happen that the binding W can be neglected 
even although V may not be a weak perturbation. 

To investigate (3.24) we first write it out more fully using (3.11), (3.20) and (2.14) 
as 

(kf, f l  V exp[ - i(K1 + K z  + W + V ) T / ~ ]  exp[i(K1 + K z  + W)~/h ] )0 )  

= (kf, f l  V exp[ - i(K1 + Kz + V ) T / ~ ]  exp[i(K1 + K2)~ /h]10) .  (5.1) 

If we put 

W’=  W+A 

where A is an arbitrary complex number we see that (5.1) is logically equivalent to 

(kf, f l  V exp[ - i(K1+ Kz + W’ + V ) T / ~ ]  exp[i(Kl+ ~2 + w’)T /~]~o)  

= (kf, f l  V exp[ - i(K1 + K2 + V ) T / ~ ]  exp[i(Kl + K2)7/h]1O), (5.3) 
and so the problem becomes that of investigating the approximation (5.3). 

We first note that the approximation 

exp[i(K1 + K2 + W’)~/h]10) -- exp[i(Kl+ Kz)~ /h] lO)  (5.4) 
is equivalent to the neglect of the renormalised binding W’ during the time interval 
- T d t S 0 in the absence of the interaction. Since K1 involves only the coordinates of 
particle 1 and K 2  + W’ involves only the coordinates of particle 2 we have, from (3.9,  
(2.1), and (2.4), 

exp[i(K1 +Kz+ W’)~/h]10) = 5 G ( k )  exp(iEk.r/h)lk) exp[i(Kz+ W’)~/h]li)  dk, 

while 

( 5 . 5 )  

exp[i(K1+ Kz)T/R]IO) = G ( k )  exp(iEk.r/h)lk) exp[iKzT/h)li) dk. (5.6) 
Now from (5.2) and (2.5) 

exp[i(Kz + W’).r/h]li) = exp[i(Ei +A)~/h]li)  (5.7) 

At this stage we introduce the assumption that the standard deviation AZ of the 
kinetic energy from the mean kinetic energy Ti in the state li) satisfies the condition 

ATT << h. (5.9) 
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With this assumption the kinetic energy E, in (5.8) may be approximated by its mean 
value T,, when the exponential can be taken outside the integral sign to give 

e x p ( i ~ ~ ~ / h ) ( i )  = exp(iT,T/h)/i). (5.10) 

Comparison of (5.7) and (5.10) shows that the right-hand sides of (5.5) and (5.6) are 
approximately equal if 

(E, + A  -TIT<< h. (5.11) 

If the right-hand sides of (5.5) and (5.6) are approximately equal then so are the 
left-hand sides, which yields (5.4). So far we have left A as an arbitrary complex 
number. If we choose A according to 

A = T , - E ,  (5.12) 

then (5.1 1) is automatically satisfied, leaving (5.9) as a sufficient condition for (5.4). 
We now put (5.9) into a form from which its physical significance will be immedi- 

ate. If In) is an arbitrary bound state of particle 2 in the potential W, and ATn the 
standard deviation of the kinetic energy in the state in), then 

( ~ ~ , ) ~ = ( n l ~ : ( n ) - ( n l ~ ~ l n ) ~  

=(nI[(Kz+ W ) -  W]’ln)-(nI(Kz+ W ) -  Wln)2 

= (n I w 2  + W)*Ifl ) - (n l(K2 + W )  Wln ) - (n I W(K2 + W)ln ) 

+(nl W2/n) - (n l (K*+  W ) -  (5.13) 

and so using (2.5) 

(AT, , )2=E:  -2En(nI Wln)+(nl W 2 / n ) - E ; + 2 E , , ( n /  Wln)-(nl Win)' 
=(nl W21n)-(nl 

= ( A  W,,)2 (5.14) 

where A W,, is the standard deviation of the potential W in the state In). In particular, 
AT, = A W, so that the condition (5.9) is logically equivalent to 

A W,T << h .  (5.15) 

If d, is of the order of the standard deviation of the  component of the position 
vector r2 in the state In) in any direction, then dividing (5.15) by d, and using the 
uncertainty principle we get 

(5.16) 

where Ap, is of the order of the standard deviation of the momentum of particle 2 in 
any direction in the state (i) .  The quantity Ap,  is, in its turn, of the order of the average 
magnitude of the momentum ( p ) ,  of 2 in any direction in the state (i), so that (5.16) is 
equivalent to 

(5.17) 

Since A W, is the standard deviation of the potential W in the state / i)  the quantity 
(AW,)/d,  is a measure of the average force on particle 2 in this state, and so the 
left-hand side is a measure of the impulse, or momentum generated by, the binding 
force in the time interval T.  The condition (5.17) then states that this must be much 

( A  W,/d,)T << h/d,  s Ap,  

A W,T/d, << ( P),. 
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smaller than the average magnitude of the momentum ( P ) ~  of 2 in the initial state 1 ~ ’ ) .  
This is precisely the classical condition for a collision to be impulsive if we do not 
consider possible changes in the effect of the binding force on 2 which take place 
during the collision. 

To obtain (5.3) we investigate the conditions under which we can make the 
approximation 

(kf, f l  v exp[- i(K1 + K 2  + W’ + V ) T / A ]  exp[i(Kl+ ~2 + w ’ ) T / ~ I ) O )  

= ( k f , f l V  exp[-i(K1+K2+ v ) T / ~ ]  exp[i(K1+K2+ W‘)~/h] lo) .  (5.18) 

The approximation (5.4) combined with (5.18) will then yield (5.3). 

(5.18) can be written as 
Firstly we note that if T’ is a time satisfying T > T ’ > O  then the left-hand side of 

(kf, f l  v exp[ - i(K1+ K2 + W’ + v ) T ’ / ~ ]  Ik, n )(k, n 1 
k.n 

x exp[ - i(K1+ K 2  + W’ + V ) ( T  - T’ ) ]  exp[i(K1 + K2 + W’)~ /h] /o ) .  (5.19) 

Now exp[i(K1+K2+ W’)~/h]10) is the state of the system at the beginning of the 
collision t = - T ,  and so 

(5.20) 

is the state of the system at a time t = - 7 ‘  at an interval T - T ’  after the start of the 
collision. Thus 

(k, n(exp[ - i (K1+K2+ U“+ V ) ( T - T ’ ) / ~ ]  exp[i(Kl+K2+ w’)~/h]10)  (5.21) 

is the probability amplitude for the unperturbed state lk, n) to be observed during the 
collision. We shall assume for simplicity that this is negligible if In) lies in the 
continuum, so that the sum over n in (5.19) may be taken to run only over bound 
states of particle 2. We now note the Trotter product formula 

exp[-i(K1+K2+ W’+ V ) ( T - T ’ ) / ~ ]  exp[i(Kl+Kz+ W’)~ /h] lo )  

exp(A + B ) =  lim 
N-w 

(5.22) 

where the limit is taken in the strong sense, and A, B are self-adjoint operators in 
Hilbert space (Reed and Simon 1972). If we put A = K1 + V and B = K 2  + W’ the 
left-hand side of (5.18) becomes 

- i(K1 + V ) T ]  [ - i(K2 + W ’ ) T ] ] ~  
N h  

x exp[i(K1 + K2 + W ‘ ) ~ / h ] ( o )  (5.23) 

for sufficiently large values of the positive integer N. 
Now 

(5.24) 

where by the argument following equation (5.19) the sum need only be taken over the 
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bound states of particle 2. Hence from (2.5) and (5 .2)  

(5 .25)  

If the standard deviation AT, of the kinetic energy in the state In) satisfies 

AT,? << h,  (5.26) 

we may argue as before to obtain 

(5.27) 

where T, is the mean kinetic energy of the state In). If we recall the product of 2 N  
exponentials in (5 .23)  we see that the condition (5 .26 )  ensures that the error in the 
product of approximating each second factor without W' according to (5 .27)  is small, 
due to the term N in the denominator of the right-hand side of (5.27). 

If we compare (5 .25)  and (5.27) we see that the left-hand sides are approximately 
equal, even taking account of the product of 2 N  terms in (5 .23) ,  provided 

IE,+A-T,/?<<h. (5 .28)  

From (5.12) we deduce that (5 .28 )  is equivalent to 

l(En - Tn)- (E, - T,)~T << A .  (5 .29 )  

As before (5 .26)  may be shown to be equivalent to 

A WnTIdn << (5.30) 

where d,  is a measure of the spatial spread in the state In) and ( p ) ,  is the average 
magnitude of the momentum in this state. The physical interpretation of (5.30) is that 
the momentum generated by the binding force in the state ln)-that is, the impulse 
due to the binding force-must be small compared with the average magnitude of the 
momentum of the state In). 

The condition (5.29) may also be put in a form which leads to a simple physical 
interpretation; for 

(En-Tn)-(Ei-Ti) 

= ( n  I(K2 + W )  - K2ln) - ( i / (K2 + W )  - K21i) 

= ( n i W ] n ) - ( i i W l i ) =  W,- W, (5 .31)  

where W, and W, are the mean values of W in the states In) and ( i )  respectively. Thus 
(5 .29)  becomes 

I w, - W,/?<< A .  (5 .32)  

If d ,  and d ,  are the spatial spreads of the states In) and li) and we assume d, > d, then 
t [ ( d ,  - d,)+ (d,  + d,)] = d,  is a measure of the average 'distance' between the two 
states. If we divide (5.32) by d ,  and use the uncertainty principle we obtain 

(5 .33 )  
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where Ap, is the standard deviation of the momentum, and ( p ) ,  is the mean magni- 
tude of the momentum, in the state In). The left-hand side of (5.33) is a measure of 
the average impulse due to the binding force when particle 2 changes its state from l i )  
to In), and the right-hand side is a measure of the average magnitude of the momen- 
tum of 2 in the state In). The quantity ( p ) ,  will be smaller than ( P ) ~  due to our 
assumption that d ,  > di. Condition (5.33) says that the momentum generated on 
average by the binding force in taking particle 2 from state I i )  to state In) should be 
small compared with ( p ) , , ,  and this again is reasonable on physical grounds. 

Finally we consider which states In) are most significant in the sum (5.24). If we 
assume no distortion of the initial state l i )  during the collision and recall the argument 
after (5.19) we need only retain the term in i in (5.24). In this case (5.32) is 
automatically satisfied, while (5.26) reduces to (5.9). 

If we assume that the initial state is 'frozen' during the collision, which is 
equivalent to the classical assumption that the target particle does not move during the 
collision, the sum over n in (5.24) need only be taken over states possessing significant 
overlap with the initial state. Alternatively we can note that the left-hand side of 
(5.23) may be written as 

The Born matrix element will be largest for n =f, while the only contribution from the 
sum over n' comes from n' = i. This suggests that in the sum over n in (5.24) the two 
most significant values of n are i and f. The conditions then become (5.17), from 
(5.30) 

A Wpl df << ( P ) f 7  (5.35) 

and from (5.33) 

The arguments which led to the physical interpretations of (5.26) and (5.32) may 
be put on a more precise basis as follows. From (5.14) we see that (5.26) is logically 
equivalent to 

A Wnr << h.  ( 5 . 3 7 )  

If Ax, is the standard deviation of the x-component of r2 in the state In) (5.37) is, by 
the precise formulation of the position-momentum uncertainty principle, logically 
equivalent to 

(5.38) 

where (Ap,), is the standard deviation of the x-component of momentum in the state 
In). The standard deviation (Apx), is given by 

[(Apx I n  1' = ( P ' X  )n - ( ( ~ x  )n 1' (5.39) 
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(5.40) 

since I(Kln)12Kx is an odd function of K ,  by parity arguments. Thus (p,), = 0, a result 
which is also seen on physical grounds. For if (p,), were not zero then the particle 2 
would drift from the origin in the x-direction in the state In), contradicting the fact 
that this is a bound state. Thus (5.39) yields [(Ap,),]* = (p:), so that (5.38) implies 

(5.41) 

2 1 / 2  Since (p,), is a measure of the mean magnitude of the momentum in the x-direction 
we see that under the first condition (5.26) for the impulse hypothesis to be valid the 
average impulse due to the binding force during the collision is small compared with 
the mean magnitude of the momentum. A similar argument applies to condition 
(5.32). 

It should be noted that the precise argument only shows that the classical condi- 
tions are implied by the quantum mechanical ones. The equivalence deduced earlier 
depended on the assumption that (Ap,),Ax, is of the order of h .  In  practice this is 
often the case. 

6. The collision time T 

So far we have not said anything about the order of magnitude of the ‘collision time’ T.  

To do this we need to say a little more about the choice of the half-width L. 
The half-width L is chosen so that the relevant transition amplitudes vary little 

over the sphere Ik - ki/ s L-* .  Now the transition amplitude T(k ,  i + kf, f) is given by 

W ,  i + kf, f) = (kf, f l  Vlk, i, +) = (kf, f, - I Vlk, i). (6.1) 

The second form of the transition amplitude in (6.1) suggests that the variation of T is 
small for Ik - kil S L-I if L-’R << 1, where R is the range of the interaction of 2 with 1 
in the state li); that is, L > > R .  For example, this is certainly the case for the Born 
approximation to the transition amplitude for the elastic scattering of an electron by a 
hydrogen atom in its ground state. 

The condition L >> R means that the wave packet is large compared with the region 
of interaction. The time t = -7, when the collision begins, is the time when the wave 
packet first begins to overlap the region of interaction. Since the region of interaction 
is small compared with the half-width of the packet we can take T as of the order of 
L/u. This assumes that the rate of expansion h / m l L  is small compared with U ;  that is, 
kiL >> 1, so we require L to satisfy this condition also. Support for this is given by 
detailed numerical calculations of the scattering of a particle by a square well potential 
(Goldberg er a1 1967) and of H +H2 reactions employing a Porter-Karplus potential 
energy surface (McCullough and Watt 1971). 
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The condition kiL >> 1 is equivalent to 

L 1  h h 
v kiv mlv2-2T1 

= - >> - = - - - 

where T1 is the kinetic energy of the incident particle 1.  Our requirements on the 
collision time T are therefore: 

r >> Rlv, (6.3) 

>>h/2Tl. (6.4) 

An interesting special case is that of resonance scattering. During such a process 
the incident particle 1 is temporarily captured by the target particle 2 to form an 
unstable bound state which then subsequently decays with the emission of 1. This is 
precisely opposite to the conditions under which we would expect the impulse hypo- 
thesis to be valid, and we shall now confirm this. 

Since by (5.14) Awn =ATn it follows from the fact r = L/v that the condition 
(5.26) for the impulse hypothesis to be valid may be written 

(L/v)A W,, << h (6.5) 

where In) is a state of particle 2 likely to be excited during the collision. Now if Ak is 
the half-width of the resonance in terms of wave numbers the condition that the 
transition amplitude does not vary much over the wave packet is 

L-'<< Ak. (6.6) 

r= mlvAv = vhAk (6.7) 

L-'<< r/tIv; (6.8) 

(L/v)r >> h .  (6.9) 

If r is the half-width of the resonance in terms of energy 

SO that (6.6) is equivalent to 

that is, 

Since r is small compared with the energy differences between adjacent states of 2 we 
have 

r<< A W ~ ,  (6.10) 

and so (6.5) implies 

(L/v)r<c h .  (6.11) 

Conditions (6.9) and (6.1 1 )  are opposite, as we should expect on physical grounds. 
One further point should be added. In (3.21) we have taken r to have the same 

value as in (3.13). In (3.21) 10) is the state into which a state of motion in which both 
particles are free would evolve. In order that T in (3.21) should have the same value 
L/v the spatial change in the state li) between r = - r and t = 0 when 2 moves freely 
should be small compared with L. This, however, is ensured by @.lo), which ensures 
that the spatial change in ( i )  is very much less than R ,  and so therefore very much less 
than L. The approximation (5.10) is, in its turn, ensured by (5.9). 
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We can also partially see this directly from (5.9). ATi is the energy uncertainty in 
the state of free motion of 2 which coincides with l i )  at t = 0. It follows from the 
time-energy uncertainty principle (McWeeny 1972) that the time T~ for the mean 
value of r2 in any direction to change by an amount equal to the position uncertainty in 
that direction satisfies 

ri 2 A/2AT,. (6.12) 

(5.9) and (6.12) imply that 

‘Tz >> T (6.13) 

so that in the interval 0 5 t 3 - T the mean value of r2 does not change significantly. 
This suggests (but does not necessarily imply) that the spatial distribution of li) when 
2 is allowed to move freely does not alter much in the interval 0 2 t 3 - r .  

Before leaving this section something ought to be said about the smallness of the 
variation of t (k ,  i + kf, f )  over the sphere Ik -kiI .s E’. We note that (3.18) can be 
written 

t (k ,  i ) +  kf, f )  = 11 ( f l ~ ’ ) ( k , ,  K ’ I  Vlk, U, + ) ( K l i )  dK dK’. (6.14) 

If the energy of the incident particle 1 is large compared with the mean kinetic energy 
of particle 2 in the bound states li) and I f )  we can assume that 

(kr, K ‘ I  Vlk, K ,  + ) = (kf, K ’ ,  - 1 Vlk, K )  (6.15) 

when (6.14) becomes 

(6.16) 

(Equation (6.15) is only exact, of course, i f  the energies of the initial and final states 
Ik, K )  and Ikf, K ’ )  are the same.) This form suggests that it is reasonable to assume that 
r(k, i + kf,  f )  does not vary much for Ik - k,I s L-’ if RL-’<< 1; that is, L >> R .  The 
same is obviously true for the Born matrix element in (4.1). 

7. Generalisation 

Suppose a particle 1 collides with a target system consisting of two particles 2 and 3 
bound together in a state ( i ) .  If is the interaction between particles j and k the 
binding is W = v 2 3  and the interaction is V = Vl2+ V I 3 .  The arguments of the 
previous sections for the impulse hypothesis (assumption I11 of § 1)  go through with 
obvious modifications. If assumptions I and 11 are also made the impulse approxima- 
tion can be obtained in the form 

T 21 t i 2  + t i 3  (7.1) 

where T is the transition operator for the collision, while t 1 2  and t 1 3  are the transition 
operators for collisions between 1 and 2, and 1 and 3, respectively (cf Chew and 
Goldberger 1952). 
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8. Examples 

8.1. Square well potential 

If W is the square well potential 

[-  VO, ( r2<R,  VO>O) 
W =  

[ 0, ( r 2 > R )  

then for any bo'und state In > we have 

O S A V , ~  VO 

os /w, -  W i / < V O  

and so the impulse hypothesis will be valid if 

V o T  << h.  (8.4) 

8.2. Electron -h ydrogen scattering 

In this case, if / i )  is the ground state of the hydrogen atom, a simple calculation shows 
that A Wi' is one atomic unit. Since the range is of the order of one atomic unit the 
condition A Wi7 << h leads to the requirement that the energy of the incident electron 
should be very much greater than one atomic unit. We therefore cannot expect the 
impulse hypothesis to be much better than the Born approximation in this case. 

8.3. Molecular binding 

Suppose 2 and 3 are atomic nuclei which are initially bound to form a molecule, and 
that the initial vibrational state of the molecule is the ground state. The only states of 
the molecule which have significant overlap with the ground state are the first few 
excited states and the ground state itself. It is an elementary exercise to calculate A W, 
and W,, - Wi, and these quantities are in fact of the same order as the vibrational 
energy. If we assume that the relevant vibrational energies are less than or equal to 
one electron volt and R is of the order of one atomic unit the conditions 

A W,,T << f i  (8 .5)  

Iw,,-wi1T<<h (8.6) 

(27*07)-'7 << 1, (8.7) 

both become 

The conditions (6.3) and (6.4) on T combined with (8.7) yield 

1 
(27*07)-' -<< 1 

U 

and 

Condition (8.9) is equivalent to requiring that the energy of 1 is very much greater 
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than eV, irrespective of its I T I B S S .  Condition (8.8) is equivalent to 

where p is the reduced mass of 1 and the target system, and has the role previously 
played by m 1. 

If 1 is an electron this requires that the incident particle energy be very much 
greater than 0.02eV, and so combining this with (8.9) we see that the impulse 
hypothesis should be valid at energies of a few eV, where the Born approximation 
breaks down. 

If 1 is a heavy particle we can take p - 1000 in atomic units. Condition (8.10) 
shows that the incident particle energy should be much greater than 20 eV, which then 
automatically satisfies (8.9). Thus for heavy particle collisions the impulse hypothesis 
should also be valid. 

9. Summary and conclusions 

Part of the impulse approximation involves the neglect of binding during the collision. 
It is natural to investigate this by time-dependent collision theory, and we have chosen 
to follow the scattering of a Gaussian wave packet of half-width L. By choosing L 
sufficiently large for the transition amplitude to vary little over the half-width L-l of 
the corresponding momentum distribution it is possible to confirm the equivalence of 
the two forms, uiz assumption I11 and (2.22), of the impulse hypothesis. 

The impulse hypothesis is obviously true if the unitary operators U and U,, can be 
replaced by the identity operator, which is the Born approximation. We investigated 
in 9: 5 the possibility of the impulse hypothesis still being true even in the case when 
replacement of U and U,, by the identity is too crude. We found that the impulse 
hypothesis held if the criteria /W,, - W,~T<< h and AW,,r<< h are valid for any bound 
states In) of the target system likely to be excited during the collision, provided that 
the excitement of continuum states of the target system during the collision is unlikely. 
These conditions closely resemble the classical conditions. If it is assumed that the 
position probability distribution of the target particle remains unchanged during the 
collision the states In )  likely to be excited during the collision are those with significant 
overlap with li). 

The collision time T in the conditions I W,, - W,/T << h and A W,,T<< h should satisfy 
(6.3) and (6.4). This ensures that the variation in the transition amplitude is 
sufficiently small and the expansion or contraction of the incident wave packet is 
unimportant. 

Finally we found that the impulse hypothesis is unlikely to be an improvement on 
the Born approximation in the case of electron collisions with ground state hydrogen, 
but should be applicable at intermediate energies for scattering of diatomic molecules. 
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